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The steepest descent solution of the Penner matrix model has a one-cut eigmdue 

support. Criticality results when the two branch points of this support coalesce. The 

support is then a closed contour in the complex eigenvalue plane. Simple generalizations 

of the Penner model have multi-cut solutions. For these models, the eigenvaiue support 

at criticality is also a closed contour, but consisting of several cuts. We solve the simplest 

such model, which we call the KT model, in the double-scaling limit. Its free energy is a 

Legendre transform of the free energy of the c=l string compactified to the critical radius 

of the Kosterlitz-Thouless phase transition. 
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1. Introduction 

The Penner matrix model was introduced as a means of generating the Euler char- 

acteristic of the moduli space of Riemann surfaces[l]. Recently Distler and Vafa have 

shown[2,3] that the double scaling critical limit of this model is related to the c=l string. 

In particular, the free energy is a Legendre transform of the free energy of the c=l string 

compactified to the self-dual radius, as computed by Gross and Klebanov in the singlet 

sector[4]. 

This result motivated us to analyze the Penner matrix model more closely, using the 

techniques successfully applied to matrix models with polynomial potentials[!j-111. We 

find that criticality in the Penner model has a number of new and interesting features. We 

also construct two distinct generalizations of the Penner model; one of these appears to 

provide a realization of the c=l string compactified to any integer multiple of the self-dual 

radius. 

2. Eigenvalue analysis of the Penner matrix model 

In the naive large N limit (i.e. the spherical limit) a hermitian matrix model with 

potential V(@) is dominated by the steepest descent configuration for the eigenvalues 

X(z)=X(i/N)=fiX;, which is described (in general) by a normalized density measure 

c&(A) which has support on some contour C in the complex A-plane. Following (121 and 

[9], the spherical solution is conveniently analyzed in terms of the generating function 

F(X) = J dP(l”)& (2-l) 

and the primitive 

J 

x 
G(X) = d/l (V’(P) - WP)) (2.2) 

We will first consider one-cut solutions, for which the support C consists of a single con- 

nected component. Thus C has two endpoints, at b=X(O) and a&,(l). The function G(A) 

has branch points at a and b, and is pure imaginary along C: G(X(z)] = 12ix2. Thus, 

along C, G’(X) is proportional to the eigenvalue density u(X)=&/&: 

G’(X) = i2inu( A) (2.3) 



Furthermore G(X) can be interpreted as the action of a single eigenvalue. Thus the steepest 

descent solution is stable only if the real part of G(X) ’ IS p os1 Ive along the entire integration ‘t’ 

contour for A in the original path integral [Q]. 

In Penner’s matrix model, the potential is nonpolynomial: 

V(X) = x + log(1 - A) (2.4) 

We can solve for the generating function F(X) using the following ansatz: 

F(A) = ; V’(X) - &J (A - a)(A -b) 
I 

This ansatz has two branch points which will give rise to a single branch cut. It has 

three undetermined parameters: f, a, and b. These parameters can be determined from a 

consideration of the analytic structure and asymptotic form of F. 

From the expression (2.1) for F in terms of the spectral density, we can see that for 

\A/ ---t m we must have F + l/X. This requires us to choose a branch of the square root in 

(2.5) which goes as X at large A, without branch cuts at infinity. It also puts two conditions 

on the parameters from matching the coefficients of A” and A-‘. This leaves one of the 

parameters undetermined. 

In addition to these requirements, (2.1) also shows that F should not be singular at 

X = I, if we assmne that the spectral density is not singular. This provides one additional 

constraint on the free parameters. For the potential we are considering, this is sufficient 

to completely determine F. We can solve these constraints explicitly: 

0=1-f 

1 = $(a + b)f 

0 = 1 -f&l - a)(1 -b) 

(2.6) 

It is easy to see that these equations imply a=b=2. 

We thus discover that criticality in the Penner model is the result of the coalescing of 

the two branch points of G’(X). This is qualitatively different from the critical behavior 

of polynomial hermitian matrix models, which results[Q] from the coalescing of a branch 

point of G’(X) with a zero of G’(X). 

The approach to criticality can be studied by introducing an overall coupling l/y in 

front of the potential V(A) (7 is related to the cosmological constant). For -y=l we recover 

the critical Penner model with a=b=2. For 7 slightly less than one, i.e.: 7 = 1-S2~, 
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6~1, the branch points are split slightly above and below the real axis: a,b N 2*2i6&. 

The branch cut (which coincides with the eigenvalue support C) lies along some curve 

connecting a and b. If this curve corresponded to, say, a straight line connecting a to b, 

we would obtain the pathological result that the eigenmlue support shrinks to a point at 

criticality. However, such behavior is not consistent with our solution for F(A). Recall that 

the asymptotic behavior of F(A) requires that =rg[J(X - u)(A - b)] vanishes as X -t +oo 

on the real axis. On the other hand, our solution of (2.6) requires that arg] (X 7 c)(X - b)] 

also vanishes as X approaches 1 on the real axis. So it cannot be the case that the branch 

cut crosses the real axis anywhere on the interval [l, co). 

Thus we have discovered that consistency requires that the branch cut will not dis- 

appear when a + b but will instead form a closed loop encircling the point X=1 and 

passing through A=2. Therefore the eigenvalue support will not shrink to a point, as has 

been previously suggested[l3]. Since the eigenvalue support C corresponds to a contour of 

Re(G(A))=O, we can plot it after computing G(X). First we obtain G’(X) at criticality: 

G’(A) = V’(X) - 2F(A) = e (2.7) 

Outside of the branch cut loop, the square root is just equal to X-2. So in this case we 

can easily integrate to give 

G(X) = (A - 2) - log(X - 1) + 2~; (2.8) 

where the integration constant has been chosen such that G(X) runs from 0 to 27ri as we 

move just outside the square root branch cut from b to a. The branch cut of the logarithm 

in (2.8) is chosen to extend along the positive real axis. From (2.8) we obtain the eigenvalue 

support C, which is plotted in fig. 1. Note that, although a=b at criticality, these endpoints 

are on opposite sides of the log branch cut. 

Away from exact criticality, the correct scaling is given by 

Which gives 

,y = 1 - 6sp 

X=2-661 

a,bz2f2iciJjS-26’p 

(2.9) 

G’(z) = 6dm (2.10) 
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As mentioned above, for /.L>O the endpoints a and b are split above and below the real 

axis. In addition, the Be(G)=0 contour C’ of fig. 1 now consists of three segments, and 

is still connected to C at the points a and b. Re(G) is p 0.~1 lve in the region to the right ‘t’ 

of C’. Thus it is easy to see that there exists a smooth curve for which ReG>O, which 

includes C, and which approaches C’ asymptotically (from the right). Such a curve can be 

used to define the original path integral of the matrix model, and guarantees stability of 

the large N steepest descent solution. Note also that, along such a curve, arg(X) = &:i 

asymptotically. Thus this definition of the model is equivalent, asymptotically, to replacing 

V(X) by V(d) in (2.4), which is, in turn, a common definition of the Penner model. 

We conclude this section with a discussion of multi-cut solutions[l4-181 and other 

critical behaviors. Clearly for the Penner potential (2.4) a multi-cut ansata for F(X) 

cannot be consistent. However we may wish to consider a generalization of the Penner 

model in which the linear term in (2.4) is replaced by an arbitrary polynomial of degree n: 

V(X) = U(X) +1og(1 -X) 

U(A) = 2 ?A” 
k=l 

(2.11) 

Then we take as an ansatz for the generating function: 

F(X) = ; 
[ 
& + L”(X) - fJ 

X-l 
(A - %)(A - 9). . . (A - a,.,] (2.12) 

This is a perfectly general ansatz for F with up to u branch cuts in the square root. Fewer 

branch cuts may be obtained by allowing some of the parameters ai to coincide and then 

defining the square root appropriately. This ansatz has 2n + 1 independent parameters, 

f and ai, which must be determined. Conditions on these parameters may be obtained 

by an analysis similar to that above. Again for large A, F must go as l/A. This gives 

n + 1 conditions. There is as before a finiteness condition at S! = 1. This leaves n - 1 

free parameters. To look for new types of critical behavior, we look for a solution where 

a2i=aalel for i=l,. . . , n. This makes the problem over-determined and it is a non-trivial 

fact that such a solution exists. In principle such a solution might exhibit multiple loops 

or other unusual features. 

However, we in fact obtain the following results at criticality. Outside of any branch 

cut loops, we find the simple expression: 

G(X) = U(X) - log(A - 1) + const (2.13) 
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This function has only one nontrivial closed contour of Re(G)=O. Further, since G(X) ---t 

-G(X) inside this contour, we can verify that there are no nested contours. Thus the 

eigenvalue support at criticality always consists of a single closed contour. 

If this contour is smooth, apart from the right angle where the branch points coalesce, 

then we have a one-cut solution. This will either be in the universality class of the Penner 

model, or can exhibit new critical behavior if we arrange for aeroes of G’(X) to coalesce 

with its branch points. The simplest example of such behavior occurs for the model 

V(A) = -;xa + 3A + log(1 - X) 

This is a critical model with eigenvalue density 

u(X) = 2 ,&I - +(A -b) 

X-l 

where a=b=2. We will not analyze such models in this paper, since they have no simple 

connection to the c=l string. However, they are interesting in their own right. 

If the contour is not smooth, but instead consists of two or more smooth segments, 

then we obtain a multi-cut solution. The simplest example of a multi-cut solution results 

from the model 

V(X) = $(A - 1)s + log(1 - X) (2.16) 

At criticality we obtain for this model 

(2.17) 

and, outside of the branch cut loop, 

G(X)=+2)-log+1)+2x; (2.18) 

As in the previous case we take the log branch cut to extend along the positive real axis. 

The eigenvalue support C here consists of a closed contour surrounding the log branch 

point, and intersecting the real axis at X=0 and 2. This is plotted in fig. 2. The contour C 

has right angles at both X=0 and 2, and thus consists of two smooth segments. Indeed from 

(2.17) it is clear that we have a two-cut solution, in the critical limit where both pairs of 

branch points coalesce simultaneously. One can explicitly verify that off criticality C breaks 

up into two disconnected pieces, and that it is possible to satisfy the stability criteria of 

(91. As we will show, the double scaling limit of this model corresponds to the c=l string 
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compactified to the critical radius of the Kosterlits-Thouless phase transition[4]; thus we 

have dubbed this the “KT model”. 

The construction just given can be generalized to provide models with n-cut solutions 

and analogous critical behavior. The simplest set of such models have potentials 

v(a) = y,- -(1 - X)” + log(1 - A) 

Because of the symmetry of the potential, G(X) and the eigenvalue support C at criticality 

will be invariant under (1 - X)-+erp(2ni/n)(l - A), module appropriate shifts of the log 

branch cut. Thus C will consist of a single closed contour with n equally spaced smooth 

segments. Note that, for n>2, some of the endpoints of then branch cuts will be complex. 

Nevertheless all of the parameters entering the orthogonal polynomial analysis are real, 

and we expect real free energy and real cotrelators. 

3. Logarithmic scaling violations 

Now we would like to relate the unusual features of the eigenvalue analysis described 

above to another characteristic feature of the Penner model on the sphere: namely, the 

presence of logarithmic scaling violations in the free energy. To do this we compute the 

spherical contribution to the free energy for arbitrary r<l, using the expression[l2]: 

Fo = - J dau(a)v(x)+~ J J e da 44~)4P) hd~ - PI2 (3.1) 
Cl 1 G 

where Cr is the contour shown in fig. 3 and has clockwise orientation; Cr coincides with the 

eigenvalue support taken just inside the square root branch cut. The eigenvalue density 

u(X) along Cl is given by: 

u(X) = 
1 1 

---J 
2xi7 a - 1 

(A - a)(X - b) 

with the endpoints given by a,b = 2yf2dm, respectively. 

Since the contour CI is given by the solution of a transcendental equation, we proceed 

by deforming the integration contour while keeping track of the log and pole singularities 

of the integrand at X=1. Using the same integration by parts tricks employed in [12], one 

sees that (3.1) can be rewritten as follows: 

Fs=-$IAu(X)[;-log(A-a)‘] 

(3.3) 
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where Cs and Cs are the contours shown in fig. 3, and the last term is the contribution 

from deforming Cr past the simple pole at X=1. 

Now, in the critical limit, the contour Cr shrinks to a point. Thus, in the first integral 

in (3.3), we need only consider the log(X-a)’ term, which has an endpoint singularity. 

Similarly, the only source of log scaling violations in the second integral in (3.3) arises 

from the difference of the two horizontal segments of Cs. These contributions can be 

computed from elementary integrals. We thus obtain 

Fo =$ log (27(1- ‘Y) + -1 - (‘;?’ log [ (1: y)j 

J 

a 
+Re dXu(X)log(A - u)s 

1-t 

+ terms regular as7 4 1 

(3.4) 

Let us write y = 1-p and evaluate the above expression for small p. The behavior of the 

integral is easily shown to be 

Re 
J 

o dAu(A)log(X - a)’ +~(j6-$r+...)log~+regular (3.5) 
27 

and thus 

Fa + +ogp+... (3.6) 

which agrees precisely with the known logarithmic scaling violation of the Penner model 

on the sphere. 

4. Double scaling limit and string equations 

As noted in [19,2], the free energy of the Penner model can be derived directly from 

the matrix integral by the method of orthogonal polynomials 1201. We wish to evaluate 

Z= 
J 

dMe-$T’(M+‘os(l-M)) 

It is convenient to change variables to @ = 1-M. As described in [2], we will restrict 

the integration to positive definite @ and assume that n = -N/r is positive. At the end, 

we analytically continue our solution to negative a and recover the critical Penner model. 

Diagonalizing * and integrating over the angular variables yields the familiar form 

& 
Z=e * dXi Xp evaAt dd(P,!P)(Xj)) 
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(a) The i’, (A) are easily recognized as the associated Laguerre polynomials, normalized so 

that P,?’ = A” + . . ., and satisfying the orthogonatity relation 

J 

OD 
dXe-“~X”PpPp = 6”,, [a-2”-- qn + a + l)r(n + l)] (4.3) 

0 

They satisfy the recursion relation 

Aqy(X) = P$\(A) + 2n +,” +5;-‘(A) + “‘y %Jp’(A) (4.4) 

We will denote the recursion coefficients above by S, and R,, respectively. Using the R,,?s, 

one can immediately obtain an (unregulated) expression for the free energy of the Penner 

model[2]. 

We will now show how the recursion coefficients could have been obtained directly from 

the string equations. This is a useful exercise in instructing us how to handle generalizations 

of the Penner model or other hermitian matrixmodels with nonpolynomial potentials. First 

consider the string equations on the sphere. In the notation of [Zl], one of these can be 

written 
2n+l 
-= 

a 
(nlW(&)ln) = S” - 1 (4.5) 

which immediately yields S,,. The second of the string equations is 

0 = (n(V’(&)(n) = 1 - (nl~-q 

This can be evaluated as a formal power series; alternatively, (4.6) can be rewritten as 

follows: 

9=1-$ 
! ,w,2w(_-~+;~ -w--l 

(4.7) 

where w+ = $[-S, f d-1. For LI positive, only the pole at w=w+ contributes, 

and we obtain 

1 = d&., S,,=~+l, andR,=;(;+l) 

Comparing (4.8) with (4.4), we see that the string equations on the sphere give the exact 

result. This means that the full string equations in the double scaling limit are trivial. 

Writing r=nJN, c=l/N=&, this limit is defined by: 

-f = l-&/A , z = l-6%z 

R = -6’~ , s = -1 - s2* 
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and the string equations are 

p = v(z + p) , u = -2p (4.10) 

It is easy to generalize these results to the case where we add arbitrary polynomial 

terms to the matrix potential. Consider the matrix potential 

v(*) = -+*k -log% (4.11) 
k=l 

The string equations in the spherical limit can be written 

z = JE (7% - llV’(&)ln) 

(4.12~) 

0 = (nlv’(*)ln) = d& + $ Sk.%?f’-k~k-l(t) (4.12b) 

where t = -S,,/dm-, while the Cfi2) and the Pk are Gegenbauer and Legendre 

polynomials, respectively. These models will exhibit critical behavior when the branch 

points of the eigenvalue support coalesce. This requires[22] that R, = 0, which implies 

t = 1. From (4.12) we then obtain only a weak constraint on the potential, namely 

U’(S,) = 1 ) where U(ip) = V(+) + log(+) (4.13) 

If we consider the double scaling limit given by (4.9), we find models in the same univer- 

sality class as the Penner model. The full string equations are again trivial. To see this, 

we write the exact (all orders) expression for the matrix element of (4.121~) : 

~z=;(l+t)-&jW,=ldwU’ [w+~R(t+nu~)+S(r+rw~)] (4.14) 

where R(++cw(d/dw)) = R,-S2p(z)-62p’(z)cw(d/dw)+. . ., and similarly for S. Because 

R,=O, only one term in (4.14) survives the integration at order 6’: 

v( E + p) = [l + U” (-%)I p (4.15) 

Thus (4.11) and (4.13) define a large class of critical models which are essentially equivalent 

to the Penner model. 
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Note that, if the potential is chosen such that the coefficient l+U”(S,) in (4.15) 

vanishes, then the double scaling limit of (4.9) is inconsistent. Potentials which satisfy 

this additional constraint correspond to the multi-cut critical models described previously. 

The double scaling limits of such models are described in the next section. 

Although it is difficult to match scaling operators of the Penner model to those of 

the c=l string, it is straightforward to compute the correlators on the sphere. The main 

ingredient is the general matrix element 

(n - n~l$~ln) = ($)” m!~~~~)!s*fm-kCtm+i)(i) 

As an example, consider the l-point function of the operator: 

(b(l- @+logQ)) = -$E(-lr(l- w$ 

=-,+;og2- (l;r)log(l-r) 

(4.17) 

This exhibits the correct log scaling violations. With a little more effort, one can obtain 

the connected 2-point function of this operator: 

(ir(l - a + log @) tT(1 - + + log @)) = (2 - 7)(l - 7) f log0 - 7) (4.18) 

5. Double scaiing limit of the KT model 

Let us write the partition function of the KT model (2.16) in the transformed variables: 

Z= /dO pTr( f i’+log *) 

J 

Note that the integral already converges for a<O, so that it is not necessary to define the 

orthogonal polynomials by analytic continuation from positive CX. This has no net effect 

on the string equations. 

The KT model is a critical model with R,=O and Z&=-l. It satisfies the constraint 

(4.13) and the additional constraint l+V”(S,) = 0. To obtain a consistent double scaling 

limit, we modify (4.9) as follows: 

R=-bp , s=-l-Is0 (5.2) 
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To obtain one string equation we use 

2n + 1 

(-a)= (nl~v’@)ln) = S: + R, + R,,+, + 1 (5.3) 

Solving to order 6’ we find 

~=$+)+P(z-l)l 

For our second string equation we write 

(5.4) 

Solving to order 6’ and employing (5.4) this gives 

P(z)P(z - 1) = 4, + PI (5.6) 

Thus (5.4) and (5.6) are the nonperturbative string equations of the KT model. In con- 

trast to the string equations of polynomial matrix models, which are nonlinear differential 

equations, here we have nonlinear difference equations. These are solved by the ansatz: 

(5.7) 

This solution corresponds to the following expression for the recursion coefficients: 

(5.3) 

As we expect for a two-cut model, the solution (5.8) can be regarded as defining two 

distinct sets of recursion coefficients, depending as n is even or odd. 

Now we can use the expression: 

F - log (5.9) 

and the solution (5.8) to get an expression for the free energy of the KT model: 

F - Nlo,,(v) - &ogr(v) 
TV=1 

(5.10) 

11 



Rewrite this by re-expressing the !7-functions: 

,(n+;+l) = {ry$ [;y;;T;:::;-;:: ,-: (5.11) 

Then expand the logarithms and recollect the terms to get 

+ c klog(2k + p + I)(% + P) (5.12) 

Let us now make an overall shift p-+p-$. Then (5.12), up to irrelevant divergent constants, 

is equivalent to a Legendre transform[2] of the free energy of the c=l string compactified 

to twice the self-dual radius(4]. 

6. Conclusion 

Distler and Vafa speculated in [2] that there might be generalizations of the Penner 

model which correspond to the c=l string compactified to any integer multiple of the self- 

dual radius. We have shown that the models defined by (2.19) appear to provide such a 

generalization, and verified this explicitly for the KT model. It would be of great interest 

to understand this correspondence at a deeper level. 

Acknowledgement: S.C. thanks Cumrun Vafa for a helpful discussion. 
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Figure Captions 

Fig. 1. Contours of Re(G(A))=O for the Penner model, plotted in the complex X-plane. 

The closed contour is the eigenvalue support C. The remaining pieces form the 

contour C’, discussed in the text. 

Fig. 2. Contours of Re(G(X))=O for the KT model, plotted in the complex A-plane. 

Fig. 3. Integration contours used in evaluating the free energy on the sphere. 
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